The Santa Ana River Watershed Region is a large, alluvial-fan-dominated region of Southern California, spanning 2,650 square miles and including nearly 20% of the state's water supplies.

The project's goal is to explore the interplay between alternative future water demand and supply scenarios. By comparing various demand and supply strategies, the potential exists to reduce imported supplies from 45-78 TAF, as shown in the table above. The potential reductions increase as one moves down the rows (Supply Scenarios) and across the columns to the right (Demand Scenarios). The reductions indicated in white result from progressively implementing more aggressive demand and supply strategies to the baseline scenarios.

By reducing imported supplies through demand management strategies and replacing imported water with developed local supplies, the SARW Region has the opportunity to significantly increase its local reliance with regards to water resources. By combining the various demand and supply strategies, the potential exists to reduce imported supplies from 45-78 TAF, as shown in the table. The potential reductions increase as one moves down the rows (Supply Scenarios) and across the columns to the right (Demand Scenarios). The reductions indicated in white result from progressively implementing more aggressive demand and supply strategies to the baseline scenarios.

The significant reduction in imported supplies in the CALscape Demand + Max Local Supplies scenario would result in an approximate $1.5 billion in avoided capital costs in 2025 in avoided costs associated with imported water.

The project team is composed of water agencies throughout the SARW Region, along with the Pacific Institute. The team includes representatives from Orange County Water District, OCWD, IEUA, and the Santa Ana River Watershed Project.

By reducing imported supplies through demand management strategies and replacing imported water with developed local supplies, the SARW Region has the opportunity to significantly increase its local reliance with regards to water resources. By combining the various demand and supply strategies, the potential exists to reduce imported supplies from 45-78 TAF, as shown in the table. The potential reductions increase as one moves down the rows (Supply Scenarios) and across the columns to the right (Demand Scenarios). The reductions indicated in white result from progressively implementing more aggressive demand and supply strategies to the baseline scenarios.

The significant reduction in imported supplies in the CALscape Demand + Max Local Supplies scenario would result in an approximate $1.5 billion in avoided capital costs in 2025 in avoided costs associated with imported water.

The project team is composed of water agencies throughout the SARW Region, along with the Pacific Institute. The team includes representatives from Orange County Water District, OCWD, IEUA, and the Santa Ana River Watershed Project.

By reducing imported supplies through demand management strategies and replacing imported water with developed local supplies, the SARW Region has the opportunity to significantly increase its local reliance with regards to water resources. By combining the various demand and supply strategies, the potential exists to reduce imported supplies from 45-78 TAF, as shown in the table. The potential reductions increase as one moves down the rows (Supply Scenarios) and across the columns to the right (Demand Scenarios). The reductions indicated in white result from progressively implementing more aggressive demand and supply strategies to the baseline scenarios.

The significant reduction in imported supplies in the CALscape Demand + Max Local Supplies scenario would result in an approximate $1.5 billion in avoided capital costs in 2025 in avoided costs associated with imported water.

The project team is composed of water agencies throughout the SARW Region, along with the Pacific Institute. The team includes representatives from Orange County Water District, OCWD, IEUA, and the Santa Ana River Watershed Project.

By reducing imported supplies through demand management strategies and replacing imported water with developed local supplies, the SARW Region has the opportunity to significantly increase its local reliance with regards to water resources. By combining the various demand and supply strategies, the potential exists to reduce imported supplies from 45-78 TAF, as shown in the table. The potential reductions increase as one moves down the rows (Supply Scenarios) and across the columns to the right (Demand Scenarios). The reductions indicated in white result from progressively implementing more aggressive demand and supply strategies to the baseline scenarios.

The significant reduction in imported supplies in the CALscape Demand + Max Local Supplies scenario would result in an approximate $1.5 billion in avoided capital costs in 2025 in avoided costs associated with imported water.

The project team is composed of water agencies throughout the SARW Region, along with the Pacific Institute. The team includes representatives from Orange County Water District, OCWD, IEUA, and the Santa Ana River Watershed Project.

By reducing imported supplies through demand management strategies and replacing imported water with developed local supplies, the SARW Region has the opportunity to significantly increase its local reliance with regards to water resources. By combining the various demand and supply strategies, the potential exists to reduce imported supplies from 45-78 TAF, as shown in the table. The potential reductions increase as one moves down the rows (Supply Scenarios) and across the columns to the right (Demand Scenarios). The reductions indicated in white result from progressively implementing more aggressive demand and supply strategies to the baseline scenarios.

The significant reduction in imported supplies in the CALscape Demand + Max Local Supplies scenario would result in an approximate $1.5 billion in avoided capital costs in 2025 in avoided costs associated with imported water.

The project team is composed of water agencies throughout the SARW Region, along with the Pacific Institute. The team includes representatives from Orange County Water District, OCWD, IEUA, and the Santa Ana River Watershed Project.